
Formal Languages

Discrete Mathematical Structures Formal Languages 1

Strings
� Alphabet: a finite set of symbols

– Normally characters of some character set
– E.g., ASCII, Unicode
– Σ is used to represent an alphabet

� String: a finite sequence of symbols from some alphabet

– If s is a string, then

�

s

�

is its length
– The empty string is symbolized by �

Discrete Mathematical Structures Formal Languages 2

String Operations

Concatenation

� x = hi, y = bye � � xy = hibye

� s � = s = � s

si �

��
�

�
� � �	 i � 0

si
 1s � �	 i � 0

Discrete Mathematical Structures Formal Languages 3

Parts of a String
� Prefix

� Suffix

� Substring

� Proper prefix, suffix, or substring

� Subsequence

Discrete Mathematical Structures Formal Languages 4

Language
� A language is a set of strings over some alphabet

L � Σ�

� Examples:

– � is a language
– � � � is a language
– The set of all legal Java programs
– The set of all correct English sentences

Discrete Mathematical Structures Formal Languages 5

Operations on Languages

Of most concern for lexical analysis

� Union

� Concatenation

� Closure

Discrete Mathematical Structures Formal Languages 6

Union

The union of languages L and M

L � M �
� s � s � L or s � M �

Discrete Mathematical Structures Formal Languages 7

Concatenation

The concatenation of languages L and M

LM �
� st � s � L and t � M �

Discrete Mathematical Structures Formal Languages 8

Kleene Closure

The Kleene closure of language L

L� �

∞

i� 0

Li

Zero or more concatenations

Discrete Mathematical Structures Formal Languages 9

Positive Closure

The positive closure of language L

L � �

∞

i� 1

Li

One or more concatenations

Discrete Mathematical Structures Formal Languages 10

Example
� Let L �

� A � B � C ��� � � � Z � a � b � c ��� � � � z �

� Let D �
� 0 � 1 � 2 ��� � � � 9 �

L � D LD

L4 L�

L � L � D �
� D �

Discrete Mathematical Structures Formal Languages 11

Regular Expressions
� A convenient way to represent languages that can be processed by

lexical analyzers

� Notation is slightly different than the set notation presented for
languages

� A regular expression is built from simpler regular expressions using a
set of defining rules

� A regular expression represents strings that are members of some
regular set

Discrete Mathematical Structures Formal Languages 12

Rules for Defining Regular Expressions
� The regular expression r denotes the language L � r �

� � is a regular expression that denotes � � � , the set containing the empty
string

� If a is a symbol in the alphabet, then a is a regular expression that
denotes � a � , the containing the string a

� How to distinguish among these notations

Discrete Mathematical Structures Formal Languages 13

Combining Regular Expressions
� Let r and s be regular expressions that denote the languages L � r � and

L � s � respectively

� r � � � s � is a regular expression denoting L � r � � L � s �

� r � � s � is a regular expression denoting L � r � L � s �

� r �
� is a regular expression denoting � L � r �
�

�

� r � is a regular expression denoting L � r �

� The language denoted by a regular expression is called a regular set

Discrete Mathematical Structures Formal Languages 14

More Formally
a � Σ

E and F are regular expressions

L � � �

� �

L � � �

�

� � �

L � a �

�

� a �

L � EF �

�

� ab � a � L � E � andb � L � F � �

L � E � F �

� L � E � � L � F �

L � � E � �

� L � E �

L � E

�
�

� L � E �
�

Discrete Mathematical Structures Formal Languages 15

Precedence Rules
� Precedence rules help simplify regular expressions

– Kleene closure has highest precedence
– Concatenation has next highest
–

�

has lowest precedence

� All operators associate left-to-right

Discrete Mathematical Structures Formal Languages 16

Example
� Let Σ �

� a � b �

� Find the strings in the language represented by the following regular
expressions:

a � b � a � b � � a � b �

a�

� a � b �
�

a � a� b a � a � b �
� a

Discrete Mathematical Structures Formal Languages 17

Algebra of Regular Expressions

Property Definition

� is commutative r � s � s � r

� is associative � r � s � � t � r � � s � t �

Concatenation is associative � rs � t � r � st �

Concatenation distributes over � r � s � t �

� rs � rt

� s � t � r � sr � tr

� is the identity element for concatenation � r � r � r �

Relation between � and � � r � � �
� � r�

� is idempotent r� � � r�

Discrete Mathematical Structures Formal Languages 18

Mathematically Describing Relational Operators

Σ = � <, >, =, ! �

relop = <
�

>

�

<=

�

>=

�

==

�

!=

Discrete Mathematical Structures Formal Languages 19

Identifiers and Numbers

Σ = � a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r,
s, t, u, v, w, x, y, z, A, B, C, D, E, F, G, H, I, J,
K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, 0, 1,
2, 3, 4, 5, 6, 7, 8, 9, _ �

letter = a � b � c � d � e � f � g � h � i � j � k � l � m � n � o � p � q � r �

s � t � u � v � w � x � y � z � A � B � C � D � E � F � G � H � I � J �

K � L � M � N � O � P � Q � R � S � T � U � V � W � X � Y � Z �

digit = 0 � 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 � 9

identifier = letter (letter � digit)�

number = digit digit�

Discrete Mathematical Structures Formal Languages 20

Finite Automata

A non-deterministic finite automaton (NFA) is a 5-tuple:

�

S

�

Σ

�

φ

�

s0 �

F

�

� S a set of states

� Σ a set of input symbols

� φ a transition function � S � Σ �
� � S

� s0 a distinguished state called the start state

� F a set of accepting or final states

Discrete Mathematical Structures Formal Languages 21

NFA Representation

An NFA can be conveniently represented by both a directed graph and a
table

0 1

2 3

a

c

c

a, c

ab, c
a

c

b

Current Next State
State a b c Output

0 � 0, 2 � – 3 0
1 – 2 0 1
2 2 – � 1, 2 � 0
3 1 0 0 1

Final states

� are double circled (graph)

� output a 1 (table)

Discrete Mathematical Structures Formal Languages 22

NFA Transition Graphs

0 1

0 1 2 3

a

a

b

b b

l

l, d

Discrete Mathematical Structures Formal Languages 23

Another NFA

32

b

b

a
a

0

4 5

∋

∋

Discrete Mathematical Structures Formal Languages 24

NFAs and Regular Sets
� An NFA can be built to recognize strings represented by a regular

expression

(i.e., strings that are members of some regular set)

32

b

b

a
a

0

4 5

∋

∋

Discrete Mathematical Structures Formal Languages 25

NFAs as Recognizers
� Given an NFA M, L � M � is the language recoginized by that machine

� If the NFA scans the complete string and ends in a final state, then the
string is a member of L � M �

We say M accepts the the string

� If the NFA scans the complete string and ends in a non-final state, then
the string is not a member of L � M �

We say M rejects the the string

� Because of non-determinism a string is accepted if there is a path to a
final state; a string is rejected if there is no path to a final state

Think about the NFA following all non-deterministic paths in parallel

Discrete Mathematical Structures Formal Languages 26

Deteministic Finite Automata (DFA)
� A special case of an NFA

� Also called a finite state machine

� No state has an � -transition

� � s � S and � a � Σ, there is at most one edge labeled a leaving s

0 1

l, d

l
Current Next State

State l d Output

0 1 – 0

1 1 1 1

Discrete Mathematical Structures Formal Languages 27

DFA Simulation

DFA() �
s � s0;
c � nextchar();
while c �� eof �

s � move(s, c); —move is the φ : � S � Σ ��� S function

c � nextchar();

�

if s � F �

return true;

�

return false;

�

Discrete Mathematical Structures Formal Languages 28

� -closure
� If s � S, then � -closure(s) is the set of states reachable from state s

using only � -transitions

� If V � S, then � -closure(V) is the set of states reachable from some
state s � V using only � -transitions

Discrete Mathematical Structures Formal Languages 29

� -closure Computation
StateSet � -closure(StateSet T) �

result � T ; stack � � ; —stack is a stack of states

for all s � T do �

stack.push(s);

�

while stack �� � �
t � stack.pop();
for each state u with an edge from t to u labeled � do �

if u

�
� result �

result � result � u;
stack.push(u);

�

�

return result;

�

Discrete Mathematical Structures Formal Languages 30

NFA Simulation

NFA() �
V � � -closure(� s0 �);
c � nextchar();
while c �� eof �

—move here returns the set of states to which there is a

—transition on input symbol c from some state s � V

V � � -closure(move(V , c));
c � nextchar();

�

if V � F �� � �

return true;

�

return false;

�

Discrete Mathematical Structures Formal Languages 31

Regular Expression � NFA
� There are several strategies to build an NFA from a regular expression

� Your book provides Thompson’s method (p. 122)

1. Parse the regular expression into its basic subexpressions
– � is a basic expression
– an alphabet symbol is a basic expression

2. Create primitive NFAs for these subexpressions
3. Guided by the regular expression operators and parentheses,

inductively combine the sub-NFAs into the composite NFA
representing the complete regular expression

� This is a syntax-directed approach

Discrete Mathematical Structures Formal Languages 32

Basic Expression � Primitive NFA

For � , the NFA is

fi

∋

start

For a � Σ, the NFA is

fi
astart

Observe that both of these NFAs have exactly one start state and one final
state

Discrete Mathematical Structures Formal Languages 33

s

�

t

If N � s � is the NFA for regular expression s, and N � t � is the NFA for regular
expression t, then N � s � t � is

i f

N(t)

N(s)

start

∋

∋

∋

∋

Discrete Mathematical Structures Formal Languages 34

st

If N � s � is the NFA for regular expression s, and N � t � is the NFA for regular
expression t, then N � st � is

fi

N(s) N(t)
start

Discrete Mathematical Structures Formal Languages 35

s �

If N � s � is the NFA for regular expression s, then N � s

�
� is

i fN(s)
start

∋ ∋

∋

∋

Discrete Mathematical Structures Formal Languages 36

�

s

�

If N � s � is the NFA for regular expression s, then N � � s � �

� N � s � is

N(s)

Discrete Mathematical Structures Formal Languages 37

NFA � DFA
� NFAs are difficult to simulate in a computer program

Non-determinism on a deterministic machine

� Fortunately, any NFA can be converted into an equivalent DFA

– A process known as subset construction is used to create the DFA
– Each state in the DFA is derived from the subset of the states in the NFA
– If the NFA has n states, its corresponding DFA may have up to 2n states

Fortunately, this theoretical maximum is rare in practice

Discrete Mathematical Structures Formal Languages 38

Subset Construction

NFAtoDFA() �

E � � -closure(� s0 �); E.mark � false; D � � E � ;
while � T � D such that T .mark = false do �

T .mark � true;
for each a � Σ do �

U � � -closure(move(T , a));
if U

�
� D �

U .mark � false;
D � D � U ;

�

DTran[T][a] � U ;

�

�

�

Discrete Mathematical Structures Formal Languages 39

DFA Minimization
Goal: Given a DFA M, find a DFA M � such that M � exhibits the same
external behavior as M, but M � has fewer states than M

Reason: M � will be simpler and more efficient

0 2

1

4

3a

b
b

a

b

a

b

a

b

a

Current Next State
State a b Output

0 2 1 1
1 2 0 1
2 4 3 0
3 2 3 1
4 0 1 0

Discrete Mathematical Structures Formal Languages 40

DFA Minimization Procedure

1. Remove states unreachable from the start state

2. Ensure that all states have a transition on every input symbol (i.e., every
element of Σ)

� Introduce a new “dead state” d if necessary

� � a � Σ, φ � d � a ��� d (i.e., move(d, a) = d, for all a)

� � s � S, if � a such that φ � s � a � is undefined, define φ � s � a ��� d

3. Collapse equivalent states into a single, representative state

Discrete Mathematical Structures Formal Languages 41

Equivalent States
� We say string w distinguishes state s from state t if

1. starting DFA M in state s and feeding it string w we arrive at an
accepting state, and

2. starting DFA M in state t and feeding it string w we arrive at an non-
final state

or vice-versa

� w � � distinguishes any final state from any non-final state

� We must find all sets of states that can be distinguished by some input
string

� Two states that cannot be distinguished by any input string are called
equivalent states

Discrete Mathematical Structures Formal Languages 42

DFA Minimization Algorithm (1)

DFA minimize(DFA M) �

Part 1: Find equivalent states
Σ � M.Σ; M’s alphabet
S � M.S; M’s states
F � M.F ; M’s final states
φ � M.φ; M’s transition function
Π � � F � S� F � ; Partition states into two blocks: final and non-final states
Π �� � � � ;

Iteratively partion the blocks until no further partitioning occurs
while Π �� Π �� � �

Π �� � � Π;
for each block B � Π do �

Partition B into sub-blocks B1 � B2 ��� � � � Bk such that two states s and t
are in the same sub-block iff � a � Σ states s and t
have transitions on a to states in the same block of Π;

Π � � Π� B �	� � B1 � B2 �� � � � Bk �

�

�

Discrete Mathematical Structures Formal Languages 43

DFA Minimization Algorithm (2)

Part 2: Build near-minimal DFA
M� .Σ � Σ; M� .S � � ; M� .F � � ; M� .φ � � ;
for each block B � Π do � Basically a block in Π becomes a state in M�

Choose one state s in B to be the representative of that block;
M� .S � M� .S� s;

�

for each state s � M� .S do � Construct in the transition function for M�

for each a � Σ do �

if φ � s � a � = t �

M� .φ � s � a � � t�

� M� .S such that t�

is the representative state of the block in Π that contains t;

�

�

The start state of M� is the respresentative state of the block in Π that contains
the start state of M;

for each state s � M� .S do � Assign final states
if s � F � M� .F � M� .F� s; �

�

Discrete Mathematical Structures Formal Languages 44

DFA Minimization Algorithm (3)

Part 3: Remove superfluous states
if M� .S contains a dead state d � Remove any dead states

M� .S � M� .S� d;
for all s � M� .S do �

if � a � Σ such that M� .φ � s � a ��� d �

M� .φ � s � a � � undefined;

�

�

for all s � M� .S do � Prune unreachable states
if s is unreachable from the start state in M� �

M� .S � M� .S� s;

�

�

return M� ; The minimized DFA

�

Discrete Mathematical Structures Formal Languages 45

Minimization Example

Current Next State
State a b Output

0 2 1 1
1 2 0 1
2 4 3 0
3 2 3 1
4 0 1 0

� a transitions are in red

� b transitions are in blue
Π3 = {{ 2},{4},{0,1,3}}

Π2 = {{ 2},{4},{0,1,3}}

Π1 = {{ 2,4},{0,1,3}}

Π2 Π3=

Discrete Mathematical Structures Formal Languages 46

Minimal DFA

Π3 = {{ 2},{4},{0,1,3}}

Π2 = {{ 2},{4},{0,1,3}}

Π1 = {{ 2,4},{0,1,3}}

Π2 Π3=

Current Next State
State a b Output

0� 2� 0� 1
2� 4� 0� 0
4� 4� 0� 0

� a transitions are in red

� b transitions are in blue

�

� 0 � 1 � 3 � � state 0 � in M �

�

� 2 � � state 2 � in M �

�

� 4 � � state 4 � in M �

Discrete Mathematical Structures Formal Languages 47

FAs and Regular Expressions

If L � Σ� is a language, the following four statements are equivalent:

1. L is a regular language

2. L can be represented by a regular expression

3. L is accepted by some NFA

4. L is accepted by some DFA

Discrete Mathematical Structures Formal Languages 48

Limitations of Regular Languages
� Build a DFA to recognize

L � L � 0

� 1�
�

� Build a DFA to recognize

L �
� 0n1n

� n �� �

� Not all languages are regular

� See the Pumping Lemma

Discrete Mathematical Structures Formal Languages 49

Context-free Grammars
� The syntax of programming language constructs can be described by

context-free grammars (CFGs)

� Relatively simple and widely used

� More powerful grammars exist

– Context-sensitive grammars (CSG)
– Type-0 grammars

Both are too complex and inefficient for general use

� Backus-Naur Form (BNF) and extended BNF (EBNF) are a convenient
way to represent CFGs

Discrete Mathematical Structures Formal Languages 50

Advantages of CFGs
� Precise, easy-to-understand syntactic specification of a programming

language

� Efficient parsers can be automatically generated for some classes of
CFGs

� This automatic generation process can reveal ambiguities that might
otherwise go undetected during the language design

� A well-designed grammar makes translation to object code easier

� Language evolution is expedited by an existing grammatical language
description

Discrete Mathematical Structures Formal Languages 51

Context-free Grammar

Context-free Grammar (CFG) is a 4-tuple

�

VN �

VT �

s

�

P

�

� VN is a set of non-terminal symbols

� VT is a set of terminal symbols

� s is a distinguished element of VN called the start symbol

� P is a set of productions or rules that specify how legal strings are built

P � VN � � VN � VT �
�

Discrete Mathematical Structures Formal Languages 52

CFG Elements
� Terminals: basic symbols from which strings are formed (typically

corresponds to tokens from lexer)

� Non-terminals: syntactic variables that denote sets of strings and, in
particular, denoting language constructs

� Start symbol: a non-terminal; the set of strings denoted by the start
symbol is the language defined by the grammar

� Productions: set of rules that define how terminals and non-terminals
can be combined to form strings in the language

A bXY z

Discrete Mathematical Structures Formal Languages 53

Example

Symbol table interpreter

G �
�

VN � VT � s � P �

VN �

� S �

VT �

� new � id � num � insert � lookup � quit �

s � S
P : S � new id num

� insert id id num

� lookup id id

� quit

Discrete Mathematical Structures Formal Languages 54

Example

An arithmetic expression language

G �
�

VN � VT � s � P �

VN �

� E �

VT �

� id � � � � � � � � � �
�

s � E
P : E � E � E

� E � E
� � E �

�

� E

� id

Discrete Mathematical Structures Formal Languages 55

Example

A programming language construct

stmt � ;

� if � expr � stmt else stmt

� while � expr � stmt

� blk

� id � expr ;

blk � � stmt�
�

Discrete Mathematical Structures Formal Languages 56

Regular Languages and CFLs
� All regular languages are context-free

� Consider the regular expression

a� b�

Let G �
� � A � B � � � a � b � � A � � A � aA � B � B � bB � � � �

Discrete Mathematical Structures Formal Languages 57

Producing a Grammar from a Regular
Language

1. Construct an NFA from the regular expression

2. Each state in the NFA corresponds to a non-terminal symbol

3. For a transition from state A to state B given input symbol x, add a
production of the form

A � xB

4. If A is a final state, add the production

A � �

Discrete Mathematical Structures Formal Languages 58

Parse Trees
� A graphical representation

of a sequence of
derivations

� Each interior node is a
non-terminal and its
children are the right side
of one of the
non-terminal’s productions

E

E

E

+ E

* E

id

id

id

Discrete Mathematical Structures Formal Languages 59

Parse Trees
� If you read the leaves of

the tree from left to right
they form a sentential form

– Also called the “yield” or
“frontier” of the parse tree

� All the leaves need not be
terminals; the parse tree
may be incomplete

� Valid sentential forms can
contain non-terminals

E

E

E

+ E

* E

id

id

id

Discrete Mathematical Structures Formal Languages 60

Comparing Context-free Grammars

LR()k

CFGs

LR(1)

LALR(1)

SLR(1)

LL(1)

Discrete Mathematical Structures Formal Languages 61

Chomsky’s Grammar Hierarchy

Consider productions of the form α � β

Type Name Criteria Recognizer

Type 3 Regular A � a � aB Finite automaton

Type 2 Context-free A � α Push-down automaton

Type 1 Context-sensitive � α ��� � β � Linear bounded automaton

Type 0 Unrestricted α �� � Turing machine

Discrete Mathematical Structures Formal Languages 62

Grammar Hierarchy

Type 0

Type 1

Type 2

Type 3

Unrestricted

Context−sensitive

Context−free

Regular

Discrete Mathematical Structures Formal Languages 63

