Formal Languages

Strings

- Alphabet: a finite set of symbols
 - Normally characters of some character set
 - E.g., ASCII, Unicode
 - Σ is used to represent an alphabet
- String: a finite sequence of symbols from some alphabet
 - If *s* is a string, then |s| is its length
 - The empty string is symbolized by ϵ

String Operations

Concatenation

• $x = hi, y = bye \longrightarrow xy = hibye$

• $S\epsilon = S = \epsilon S$

$$s^{i} = \begin{cases} \epsilon, & \text{if } i = 0 \\ s^{i-1}s, & \text{if } i > 0 \end{cases}$$

Parts of a String

- Prefix
- Suffix
- Substring
- Proper prefix, suffix, or substring
- Subsequence

Language

• A language is a set of strings over some alphabet

 $L\subseteq \Sigma^*$

- Examples:
 - \varnothing is a language
 - $\{\epsilon\}$ is a language
 - The set of all legal Java programs
 - The set of all correct English sentences

Operations on Languages

Of most concern for lexical analysis

- Union
- Concatenation
- Closure

Union

The union of languages L and M

$$L \cup M = \{s \mid s \in L \text{ or } s \in M\}$$

Concatenation

The concatenation of languages L and M

$$LM = \{st \mid s \in L \text{ and } t \in M\}$$

Kleene Closure

The Kleene closure of language \boldsymbol{L}

$$L^* = \bigcup_{i=0}^{\infty} L^i$$

Zero or more concatenations

Positive Closure

The positive closure of language L

$$L^+ = \bigcup_{i=1}^{\infty} L^i$$

One or more concatenations

• Let
$$L = \{A, B, C, ..., Z, a, b, c, ..., z\}$$

• Let $D = \{0, 1, 2, \dots, 9\}$

Regular Expressions

- A convenient way to represent languages that can be processed by lexical analyzers
- Notation is slightly different than the set notation presented for languages
- A regular expression is built from simpler regular expressions using a set of defining rules
- A regular expression represents strings that are members of some *regular set*

Rules for Defining Regular Expressions

- The regular expression r denotes the language L(r)
- ϵ is a regular expression that denotes $\{\epsilon\}$, the set containing the empty string
- If a is a symbol in the alphabet, then a is a regular expression that denotes {a}, the containing the string a
- How to distinguish among these notations

Combining Regular Expressions

- Let r and s be regular expressions that denote the languages L(r) and L(s) respectively
 - (r)|(s) is a regular expression denoting $L(r) \cup L(s)$
 - (r)(s) is a regular expression denoting L(r)L(s)
 - $(r)^*$ is a regular expression denoting
 - is a regular expression denoting

 $L(r) \cup L(s)$ L(r)L(s) $(L(r)^*)$ L(r)

• The language denoted by a regular expression is called a regular set

(r)

More Formally

$a \in \Sigma$

E and F are regular expressions

$$L(\emptyset) = \emptyset$$

$$L(\epsilon) = \{\epsilon\}$$

$$L(a) = \{a\}$$

$$L(EF) = \{ab \mid a \in L(E) \text{ and } b \in L(F)\}$$

$$L(E \mid F) = L(E) \cup L(F)$$

$$L((E)) = L(E)$$

$$L(E^*) = L(E)^*$$

Precedence Rules

- Precedence rules help simplify regular expressions
 - Kleene closure has highest precedence
 - Concatenation has next highest
 - has lowest precedence
- All operators associate left-to-right

• Let
$$\Sigma = \{a, b\}$$

• Find the strings in the language represented by the following regular expressions:

Algebra of Regular Expressions

Property	Definition
is commutative	$r \mid s = s \mid r$
is associative	$ (r \mid s) \mid t = r \mid (s \mid t)$
Concatenation is associative	(rs)t = r(st)
Concatenation distributes over	$r(s \mid t) = rs \mid rt$
	$(s \mid t)r = sr \mid tr$
ϵ is the identity element for concatenation	$\epsilon r = r = r\epsilon$
Relation between $*$ and ϵ	$(r \mid \epsilon)^* = r^*$
* is idempotent	$r^{**} = r^*$

Mathematically Describing Relational Operators

$$\Sigma = \{ <, >, =, ! \}$$

relop = < | > | <= | >= | == | !=

Identifiers and Numbers

- Σ = { a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, _ }
- letter = a | b | c | d | e | f | g | h | i | j | k | 1 | m | n | o | p | q | r | s | t | u | v | w | x | y | z | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |_

digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

identifier = *letter* (*letter* | *digit*) *

 $number = digit digit^*$

Finite Automata

A non-deterministic finite automaton (NFA) is a 5-tuple:

 $\langle S, \Sigma, \phi, s_0, F \rangle$

- *S* a set of states
- Σ a set of input symbols
- ϕ a transition function $(S, \Sigma) \longrightarrow S$
- s_0 a distinguished state called the *start state*
- *F* a set of accepting or final states

NFA Representation

An NFA can be conveniently represented by both a directed graph and a table

Current	Next State			
State	а	b	С	Output
0	{ 0, 2 }	-	3	0
1	_	2	0	1
2	2	_	{1, 2}	0
3	1	0	0	1

Final states

- are double circled (graph)
- output a 1 (table)

NFA Transition Graphs

Another NFA

NFAs and Regular Sets

 An NFA can be built to recognize strings represented by a regular expression

(i.e., strings that are members of some regular set)

NFAs as Recognizers

- Given an NFA M, L(M) is the language recognized by that machine
- If the NFA scans the complete string and ends in a final state, then the string is a member of L(M)

We say *M* accepts the the string

• If the NFA scans the complete string and ends in a non-final state, then the string is not a member of L(M)

We say M rejects the the string

• Because of non-determinism a string is accepted if there is a path to a final state; a string is rejected if there is no path to a final state

Think about the NFA following all non-deterministic paths in parallel

Deteministic Finite Automata (DFA)

- A special case of an NFA
- Also called a *finite state machine*
- No state has an ϵ -transition
- $\forall s \in S$ and $\forall a \in \Sigma$, there is at most one edge labeled *a* leaving *s*

Current	Next State		
State	l	d	Output
0	1	_	0
1	1	1	1

DFA Simulation

```
DFA() {
          s \leftarrow s_0;
          c \leftarrow \text{nextchar}();
          while c \neq \text{eof} \{
                    c \leftarrow \text{nextchar}();
          }
          if s \in F {
                    return true;
          }
          return false;
}
```

 $s \leftarrow move(s, c);$ —move is the $\phi: (S, \Sigma) \rightarrow S$ function

ϵ-closure

- If $s \in S$, then ϵ -closure(s) is the set of states reachable from state s using only ϵ -transitions
- If V ⊆ S, then ε-closure(V) is the set of states reachable from some state s ∈ V using only ε-transitions

ϵ -closure Computation

```
StateSet \epsilon-closure(StateSet T) {
      result \leftarrow T; stack \leftarrow \varnothing; —stack is a stack of states
      for all s \in T do {
               stack.push(s);
      while stack \neq \emptyset {
               t \leftarrow \text{stack.pop}();
               for each state u with an edge from t to u labeled \epsilon do {
                       if u \notin \text{result} \{
                                result \leftarrow result \cup u;
                                stack.push(u);
      return result;
```

NFA Simulation

```
NFA() {
         V \leftarrow \epsilon-closure(\{s_0\});
         c \leftarrow \text{nextchar}();
         while c \neq \text{eof} {
                  —move here returns the set of states to which there is a
                  —transition on input symbol c from some state s \in V
                  V \leftarrow \epsilon-closure(move(V, c));
                  c \leftarrow \text{nextchar}();
          }
         if V \cap F \neq \emptyset {
                  return true;
          }
         return false;
```

Regular Expression \longrightarrow NFA

- There are several strategies to build an NFA from a regular expression
- Your book provides Thompson's method (p. 122)
 - 1. Parse the regular expression into its basic subexpressions
 - ϵ is a basic expression
 - an alphabet symbol is a basic expression
 - 2. Create primitive NFAs for these subexpressions
 - Guided by the regular expression operators and parentheses, inductively combine the sub-NFAs into the composite NFA representing the complete regular expression
- This is a syntax-directed approach

Basic Expression \longrightarrow Primitive NFA

For ϵ , the NFA is

For $a \in \Sigma$, the NFA is

Observe that both of these NFAs have exactly one start state and one final state

 $S \mid t$

If N(s) is the NFA for regular expression *s*, and N(t) is the NFA for regular expression *t*, then $N(s \mid t)$ is

If N(s) is the NFA for regular expression *s*, and N(t) is the NFA for regular expression *t*, then N(st) is

If N(s) is the NFA for regular expression *s*, then $N(s^*)$ is

(s)

If N(s) is the NFA for regular expression s, then N((s)) = N(s) is

$\mathbf{NFA} \longrightarrow \mathbf{DFA}$

- NFAs are difficult to simulate in a computer program
 Non-determinism on a deterministic machine
- Fortunately, any NFA can be converted into an equivalent DFA
 - A process known as subset construction is used to create the DFA
 - Each state in the DFA is derived from the subset of the states in the NFA
 - If the NFA has *n* states, its corresponding DFA may have up to 2^n states Fortunately, this theoretical maximum is rare in practice

Subset Construction

```
NFAtoDFA() {
        E \leftarrow \epsilon-closure(\{s_0\}); E.mark \leftarrow false; D \leftarrow \{E\};
         while \exists T \in D such that T.mark = false do {
                  T.mark \leftarrow true;
                  for each a \in \Sigma do {
                           U \leftarrow \epsilon-closure(move(T, a));
                           if U \notin D {
                                     U.mark \leftarrow false;
                                     D \leftarrow D \cup U;
                            \mathsf{DTran}[T][a] \leftarrow U;
```

DFA Minimization

Goal: Given a DFA M, find a DFA M' such that M' exhibits the same external behavior as M, but M' has fewer states than M

Reason: M' will be simpler and more efficient

Current	Next State		
State	а	b	Output
0	2	1	1
1	2	0	1
2	4	3	0
3	2	3	1
4	0	1	0

DFA Minimization Procedure

- 1. Remove states unreachable from the start state
- 2. Ensure that all states have a transition on every input symbol (i.e., every element of Σ)
 - Introduce a new "dead state" d if necessary
 - $\forall a \in \Sigma, \phi(d, a) = d$ (i.e., move (d, a) = d, for all a)
 - $\forall s \in S$, if $\exists a$ such that $\phi(s, a)$ is undefined, define $\phi(s, a) = d$
- 3. Collapse equivalent states into a single, representative state

Equivalent States

- We say string *w* distinguishes state *s* from state *t* if
 - 1. starting DFA M in state s and feeding it string w we arrive at an accepting state, and
 - 2. starting DFA *M* in state *t* and feeding it string *w* we arrive at an non-final state

or vice-versa

- $w = \epsilon$ distinguishes any final state from any non-final state
- We must find all sets of states that can be distinguished by some input string
- Two states that cannot be distinguished by any input string are called *equivalent states*

DFA Minimization Algorithm (1)

DFA minimize(DFA M) {				
Part 1: Find equivalent states	8			
$\Sigma \leftarrow M$. Σ ;	M's alphabet			
$S \leftarrow M.S;$	M's states			
$F \leftarrow M.F;$	M's final states			
$\phi \leftarrow M.\phi;$	M's transition function			
$\Pi \leftarrow \{F, S - F\};$	Partition states into two blocks: final and non-final states			
$\Pi_{\mathrm{old}} \leftarrow \varnothing;$				
Iteratively partion the blocks	until no further partitioning occurs			
while $\Pi eq \Pi_{ m old}$ {				
$\Pi_{\mathrm{old}} \leftarrow \Pi;$				
for each block $B\in \Gamma$	I do {			
Partition B into	sub-blocks B_1, B_2, \ldots, B_k such that two states s and t			
are in the same sub-block iff $\forall a \in \Sigma$ states s and t				
have transitions on a to states in the same block of Π ;				
$\Pi \leftarrow (\Pi - B) \cup$	$\cup \{B_1, B_2, \ldots, B_k\}$			
}				
}				

DFA Minimization Algorithm (2)

Part 2: Build near-minimal DFA

```
M' . \Sigma \leftarrow \Sigma; M' . S \leftarrow \varnothing; M' . F \leftarrow \varnothing; M' . \phi \leftarrow \varnothing;
for each block B \in \Pi do { Basically a block in \Pi becomes a state in M'
      Choose one state s in B to be the representative of that block;
      M' . S \leftarrow M' . S \cup s;
for each state s \in M'. S do {
                                                     Construct in the transition function for M'
      for each a \in \Sigma do {
            if \phi(s,a) = t {
                   M' \cdot \phi(s, a) \leftarrow t' \in M' \cdot S such that t'
                   is the representative state of the block in \Pi that contains t;
             }
}
The start state of M' is the respresentative state of the block in \Pi that contains
      the start state of M:
for each state s \in M'. S do {
                                                                                  Assign final states
      if s \in F \{ M' \cdot F \leftarrow M' \cdot F \cup s; \}
}
```

DFA Minimization Algorithm (3)

Part 3: Remove superfluous states if M'.S contains a dead state $d \{$ $M'.S \leftarrow M'.S - d;$ for all $s \in M'.S$ do $\{$ if $\exists a \in \Sigma$ such that $M'.\phi(s,a) = d \{$ $M'.\phi(s,a) \leftarrow$ undefined; $\}$ for all $s \in M'.S$ do $\{$ if s is unreachable from the start state in $M' \{$ $M'.S \leftarrow M'.S - s;$ $\}$ $\}$ return M';

Remove any dead states

Prune unreachable states

The minimized DFA

Minimization Example

Current	Next	State	
State	а	b	Output
0	2	1	1
1	2	0	1
2	4	3	0
3	2	3	1
4	0	1	0

- *a* transitions are in red
- *b* transitions are in blue

 $\Pi_1 = \{\{2,4\},\{0,1,3\}\}$

 $\Pi_3 = \{\{2\}, \{4\}, \{0, 1, 3\}\}$

 $\Pi_2 = \Pi_3$

Minimal DFA

}

$$\Pi_{1} = \{\{2,4\},\{0,1,3\}\}$$
$$\Pi_{2} = \{\{2\},\{4\},\{0,1,3\}\}$$
$$\Pi_{2} = \{\{2\},\{4\},\{0,1,3\}\}$$

 $\Pi_3 = \{\{2\}, \{4\}, \{0, 1, 3\}\}$

 $\Pi_2 = \Pi_3$

Current	Next State		
State	а	b	Output
0'	2'	0'	1
2'	4′	0'	0
4'	4′	0'	0

- *a* transitions are in red
- *b* transitions are in blue
- $\{0,1,3\} \Rightarrow$ state 0' in M'
- $\{2\} \Rightarrow$ state 2' in M'
- $\{4\} \Rightarrow$ state 4' in M'

FAs and Regular Expressions

If $L \subseteq \Sigma^*$ is a language, the following four statements are equivalent:

- 1. *L* is a regular language
- 2. *L* can be represented by a regular expression
- 3. *L* is accepted by some NFA
- 4. *L* is accepted by some DFA

Limitations of Regular Languages

• Build a DFA to recognize

$$L = L(0^*1^*)$$

• Build a DFA to recognize

$$L = \{0^n 1^n \mid n \in \mathbb{N}\}$$

- Not all languages are regular
- See the *Pumping Lemma*

Context-free Grammars

- The syntax of programming language constructs can be described by context-free grammars (CFGs)
- Relatively simple and widely used
- More powerful grammars exist
 - Context-sensitive grammars (CSG)
 - Type-0 grammars

Both are too complex and inefficient for general use

 Backus-Naur Form (BNF) and extended BNF (EBNF) are a convenient way to represent CFGs

Advantages of CFGs

- Precise, easy-to-understand syntactic specification of a programming language
- Efficient parsers can be automatically generated for some classes of CFGs
- This automatic generation process can reveal ambiguities that might otherwise go undetected during the language design
- A well-designed grammar makes translation to object code easier
- Language evolution is expedited by an existing grammatical language description

Context-free Grammar

Context-free Grammar (CFG) is a 4-tuple

$$\langle V_N, V_T, s, P \rangle$$

- V_N is a set of non-terminal symbols
- V_T is a set of terminal symbols
- s is a distinguished element of V_N called the start symbol
- *P* is a set of productions or rules that specify how legal strings are built

$$P \subseteq V_N \times (V_N \cup V_T)^*$$

CFG Elements

- **Terminals**: basic symbols from which strings are formed (typically corresponds to tokens from lexer)
- Non-terminals: syntactic variables that denote sets of strings and, in particular, denoting language constructs
- Start symbol: a non-terminal; the set of strings denoted by the start symbol is the language defined by the grammar
- **Productions**: set of rules that define how terminals and non-terminals can be combined to form strings in the language

 $A \rightarrow bXYz$

Symbol table interpreter

$$G = \langle V_N, V_T, s, P \rangle$$

$$V_N = \{S\}$$

$$V_T = \{\text{new}, \text{id}, \text{num}, \text{insert}, \text{lookup}, \text{quit}\}$$

$$s = S$$

$$P : S \rightarrow \text{new id num}$$

$$| \text{ insert id id num}$$

$$| \text{ lookup id id}$$

$$| \text{ quit}$$

An arithmetic expression language

$$G = \langle V_N, V_T, s, P \rangle$$

$$V_N = \{E\}$$

$$V_T = \{\mathbf{id}, +, *, (,), -\}$$

$$s = E$$

$$P : E \rightarrow E + E$$

$$| E * E$$

$$| (E)$$

$$| -E$$

$$| \mathbf{id}$$

A programming language construct

$$stmt \rightarrow ;$$

$$| if (expr) stmt else stmt$$

$$| while (expr) stmt$$

$$| blk$$

$$| id = expr;$$

$$blk \rightarrow \{stmt^*\}$$

Regular Languages and CFLs

- All regular languages are context-free
- Consider the regular expression

 a^*b^*

Let
$$G = \langle \{A, B\}, \{a, b\}, A, \{A \rightarrow aA \mid B, B \rightarrow bB \mid \epsilon \} \rangle$$

Producing a Grammar from a Regular Language

- 1. Construct an NFA from the regular expression
- 2. Each state in the NFA corresponds to a non-terminal symbol
- 3. For a transition from state A to state B given input symbol x, add a production of the form

$$A \rightarrow xB$$

4. If *A* is a final state, add the production

$$A \rightarrow \epsilon$$

Parse Trees

- A graphical representation of a sequence of derivations
- Each interior node is a non-terminal and its children are the right side of one of the non-terminal's productions

Parse Trees

- If you read the leaves of the tree from left to right they form a sentential form
 - Also called the "yield" or
 "frontier" of the parse tree
- All the leaves need not be terminals; the parse tree may be incomplete
- Valid sentential forms *can* contain non-terminals

Comparing Context-free Grammars

Chomsky's Grammar Hierarchy

Consider productions of the form $\alpha \to \beta$

Туре	Name	Criteria	Recognizer
Туре 3	Regular	$A \rightarrow a \mid aB$	Finite automaton
Type 2	Context-free	$A \rightarrow \alpha$	Push-down automaton
Type 1	Context-sensitive	$ \alpha \leq \beta $	Linear bounded automaton
Туре 0	Unrestricted	$\alpha \neq \epsilon$	Turing machine

Grammar Hierarchy

